Advertisement
Thoracic| Volume 193, ISSUE 2, P909-919, February 2015

The effect of methylene blue treatment on aspiration pneumonia

Published:September 04, 2014DOI:https://doi.org/10.1016/j.jss.2014.08.039

      Abstract

      Background

      The study aimed to examine whether methylene blue (MB) prevents different pulmonary aspiration materials-induced lung injury in rats.

      Methods

      The experiments were designed in 60 Sprague–Dawley rats, ranging in weight from 250–300 g, randomly allotted into one of six groups (n = 10): saline control, Biosorb Energy Plus (BIO), hydrochloric acid (HCl), saline + MB treated, BIO + MB treated, and HCl + MB treated. Saline, BIO, and HCl were injected into the lungs in a volume of 2 mL/kg. After surgical procedure, MB was administered intraperitoneally for 7 days at a daily dose of 2 mg/kg per day. Seven days later, rats were killed, and both lungs in all groups were examined biochemically and histopathologically.

      Results

      Our findings show that MB inhibits the inflammatory response reducing significantly (P < 0.05) peribronchial inflammatory cell infiltration, alveolar septal infiltration, alveolar edema, alveolar exudate, alveolar histiocytes, interstitial fibrosis, granuloma, and necrosis formation in different pulmonary aspiration models. Pulmonary aspiration significantly increased the tissue hydroxyproline content, malondialdehyde levels, and decreased (P < 0.05) the antioxidant enzyme (superoxide dismutase and glutathione peroxidase) activities. MB treatment significantly (P < 0.05) decreased the elevated tissue hydroxyproline content and malondialdehyde levels and prevented the inhibition of superoxide dismutase and glutathione peroxidase (P < 0.05) enzymes in the tissues. Furthermore, there is a significant reduction in the activity of inducible nitric oxide synthase (iNOS), terminal deoxynucleotidyl transferase dUTP nick end labeling, and arise in the expression of surfactant protein D in lung tissue of different pulmonary aspiration models with MB therapy.

      Conclusions

      MB treatment might be beneficial in lung injury and therefore shows potential for clinical use.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Surgical Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Tasch M.D.
        • Stoelting R.K.
        Aspiration prevention, prophylaxis, and treatment.
        in: Benumoff J.L. Airway management. Mosby, St Louis1996: 183
        • Shepherd K.E.
        • Faulkner C.S.
        • Thal G.D.
        • Leiter J.C.
        Acute, subacute, and chronic histologic effects of simulated aspiration of a 0.7% sucralfate suspension in rats.
        Crit Care Med. 1995; 23: 532
        • Marik P.E.
        Aspiration pneumonitis and aspiration pneumonia.
        N Engl J Med. 2001; 344: 665
        • Winterbauer R.H.
        • Durning Jr., R.B.
        • Baron E.
        • McFadden M.C.
        Aspirated nasogastric feeding solution detected by glucose strips.
        Ann Intern Med. 1981; 95: 67
        • Elpern E.H.
        • Jacobs E.R.
        • Tangney C.C.
        • Bone R.C.
        Nonspecificity of glucose reagent strips as a marker of formula.
        Am Rev Respir Dis. 1986; 131: A288
        • Potts R.G.
        • Zaroukian M.H.
        • Guerrero P.A.
        • Baker C.D.
        Comparison of blue dye visualization and glucose oxidase test strip methods for detecting pulmonary aspiration of enteral feedings in intubated adults.
        Chest. 1993; 103: 117
        • Kinsey G.C.
        • Murray M.J.
        • Swensen S.J.
        • Bone R.C.
        Glucose content of tracheal aspirates: implications for the detection of tube feeding aspiration.
        Crit Care Med. 1994; 22: 1557
        • Metheny N.A.
        • Clouse R.E.
        • Chang Y.H.
        • Stewart B.J.
        Tracheobronchial aspiration of gastric contents in critically ill tube-fed patients: frequency, outcomes, and risk factors.
        Crit Care Med. 2006; 34: 1007
        • Metheny N.A.
        • Dahms T.E.
        • Stewart B.J.
        • et al.
        Efficacy of dye-stained enteral formula in detecting pulmonary aspiration.
        Chest. 2002; 122: 276
        • James C.F.
        • Modell J.H.
        • Gibbs C.P.
        • Kuck E.J.
        • Ruiz B.C.
        Pulmonary aspiration: effects of volume and pH in the rat.
        Anesth Analg. 1984; 63: 665
        • Leth-Larsen R.
        • Nordenback C.
        • Tornoe I.
        • et al.
        Surfactant protein D (SP-D) serum levels in patients with community acquired pneumonia.
        Clin Immunol. 2003; 108: 29
        • McCord J.M.
        Oxygen-derived free radicals in postischemic tissue injury.
        N Engl J Med. 1985; 312: 159
        • Parks D.A.
        • Bulkley G.B.
        • Granger D.N.
        Role of oxygen-derived free radicals in digestive tract diseases.
        Surgery. 1983; 94: 415
        • Schoenberg M.H.
        • Beger H.G.
        Reperfusion injury after intestinal ischemia.
        Crit Care Med. 1993; 21: 1376
        • Kumamoto Y.
        • Suematsu M.
        • Shimazu M.
        • et al.
        Kupffer cell-independent acute hepatocellular oxidative stress and decreased bile formation in post-cold-ischemic rat liver.
        Hepatology. 1999; 30: 1454
        • Ravanat J.L.
        • Di Mascio P.
        • Martinez G.R.
        • Medeiros M.H.
        • Cadet J.
        Singlet oxygen induces oxidation of cellular DNA.
        J Biol Chem. 2000; 275: 40601
        • Casini A.
        • Ceni E.
        • Salzano R.
        • et al.
        Neutrophil-derived superoxide anion induces lipid peroxidation and stimulates collagen synthesis in human hepatic stellate cells: role of nitric oxide.
        Hepatology. 1997; 25: 361
        • Mayer A.M.
        • Spitzer J.A.
        Modulation of superoxide anion generation by manoalide, arachidonic acid and staurosporine in liver infiltrated neutrophils in a rat model of endotoxemia.
        J Pharmacol Exp Ther. 1993; 267: 400
        • Spitzer J.A.
        • Mayer A.M.
        Hepatic neutrophil influx: eicosanoid and superoxide formation in endotoxemia.
        J Surg Res. 1993; 55: 60
        • Bhatia M.
        • Moochhala S.
        Role of inflammatory mediators in the pathophysiology of acute respiratory distress syndrome.
        J Pathol. 2004; 202: 145
        • Metnitz P.G.
        • Bartens C.
        • Fischer M.
        • Fridrich P.
        • Steltzer H.
        • Druml W.
        Antioxidant status in patients with acute respiratory distress syndrome.
        Intensive Care Med. 1999; 25: 180
        • Tasaka S.
        • Amaya F.
        • Hashimoto S.
        • Ishızaka A.
        Roles of oxidants and redox signaling in the pathogenesis of acute respiratory distress syndrome.
        Antioxid Redox Signal. 2008; 10: 739
        • Aksu B.
        • Inan M.
        • Kanter M.
        • et al.
        The effects of methylene blue on renal scarring due to pyelonephritis in rats.
        Pediatr Nephrol. 2007; 22: 992
        • Cheng I.W.
        • Ware L.B.
        • Greene K.E.
        • Nuckton T.J.
        • Eisner M.D.
        • Matthay M.A.
        Prognostic value of surfactant proteins A and D in patients with acute lung injury.
        Crit Care Med. 2003; 31: 20
        • Herbein J.F.
        • Wright J.R.
        Enhanced clearance of surfactant protein D during LPS-induced acute inflammation in rat lung.
        Am J Physiol Lung Cell Mol Physiol. 2001; 281: 268
        • Guzel A.
        • Basaran U.
        • Aksu B.
        • et al.
        Protective effects of S-methylisothiourea sulfate on different aspiration materials-induced lung injury in rats.
        Int J Pediatr Otorhinolaryngol. 2008; 72: 1241
        • Salaris S.C.
        • Babbs C.F.
        • Voorhees III, W.D.
        Methylene blue as an inhibitor of superoxide generation by xanthine oxidase. A potential new drug for the attenuation of ischemia/reperfusion injury.
        Biochem Pharmacol. 1991; 42: 499
        • Wainwright M.
        • Crossley K.B.
        Methylene blue – a therapeutic dye for all seasons?.
        J Chemother. 2002; 14: 431
        • Clifton J.
        • Leikin J.
        Methylene blue.
        Am J Ther. 2003; 10: 289
        • Kelner M.
        • Bagnell R.
        • Hale B.
        • Alexander N.M.
        Potential of methylene blue to block oxygen radical generation in reperfusion injury.
        Basic Life Sci. 1988; 49: 895
        • Weingartner R.
        • Oliveira E.
        • Oliveira E.S.
        • et al.
        Blockade of the action of nitric oxide in human septic shock increases systemic vascular resistance and has detrimental effects on pulmonary function after a short infusion of methylene blue.
        Braz J Med Biol Res. 1999; 32: 1505
        • Gonzalez-Lima F.
        • Bruchey A.K.
        Extinction memory improvement by the metabolic enhancer methylene blue.
        Learn Mem. 2004; 11: 633
        • Takil A.
        • Umuroglu T.
        • Gogus Y.F.
        • Etı Z.
        • Yildizeli B.
        • Ahiskali R.
        Histopathologic effects of lipid content of enteral solutions after pulmonary aspiration in rats.
        Nutrition. 2003; 19: 666
        • Hsu S.M.
        • Raine L.
        • Fanger H.
        Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures.
        J Histochem Cytochem. 1981; 29: 577
        • Kivirikko K.I.
        • Prockop D.J.
        Partial characterization of protocollagen from embryonic cartilage.
        Biochem J. 1967; 102: 432
        • Ohkawa H.
        • Ohishi N.
        • Yagi K.
        Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction.
        Anal Biochem. 1979; 95: 351
        • Lowry O.H.
        • Rosebrough N.J.
        • Farr A.L.
        • Randall R.J.
        Protein measurement with the Folin phenol reagent.
        J Biol Chem. 1951; 183: 265
        • Sun Y.
        • Oberley L.W.
        • Li Y.A.
        Simple method for clinical assay of superoxide dismutase.
        Clin Chem. 1988; 34: 497
        • Paglia D.E.
        • Valentine W.N.
        Studies on the quantitative and qualitative characterisation of erythrocyte glutathione peroxidase.
        J Lab Clin Med. 1967; 70: 158
        • Pawlik M.T.
        • Schreyer A.G.
        • Ittner K.P.
        • et al.
        Early treatment with pentoxifylline reduces lung injury induced by acid aspiration in rats.
        Chest. 2005; 127: 613
        • DeLegge M.H.
        Aspiration pneumonia: incidence, mortality and at-risk populations.
        JPEN. 2002; 26: 24
        • Exarhos N.D.
        • Logan W.D.
        • Abbott O.A.
        • Hatcher C.R.
        The importance of pH and volume in tracheobronchial aspiration.
        Dis Chest. 1965; 47: 167
        • Jian M.Y.
        • Koizumi T.
        • Kubo K.
        Effects of nitric oxide synthase inhibitor on acid aspiration-induced lung injury in rats.
        Pulm Pharmacol Ther. 2005; 18: 33
        • Wright J.L.
        Aspiration pneumonia.
        in: Thurlbeck W.M. Pathology of the lung. 2nd ed. Thieme Medical Publishers, New York1998 (Chapter 25)
        • Ahrens P.
        • Noll C.
        • Kitz R.
        • Willigens P.
        • Zielen S.
        • Hofmann D.
        Lipid-laden alveolar macrophages: a useful marker of silent aspiration in children.
        Pediatr Pulmonol. 1999; 28: 83
        • Bauer M.L.
        • Lyrene R.K.
        Chronic aspiration in children: evaluation of the lipid-laden macrophage index.
        Pediatr Pulmonol. 1999; 28: 94
        • Umuroglu T.
        • Takil A.
        • Irmak P.
        • et al.
        Effects of multiple pulmonary aspirations of enteral solutions on lung tissue damage.
        Clin Nutr. 2006; 25: 45
        • Garzón Lorenzo P.
        • Torrent Vernetta A.
        • Server Salva' L.
        • de Vicente C.M.
        • García-Cendón C.
        • Gartner S.
        Exogenous lipoid pneumonia.
        An Pediatr (Barc). 2008; 68: 496
        • Metheny N.A.
        • Dahms T.E.
        • Stewart B.J.
        • Stone K.S.
        • Frank P.A.
        • Clouse R.E.
        Verification of inefficacy of the glucose method in detecting aspiration associated with tube feedings.
        Medsurg Nurs. 2005; 14: 112
        • Guzel A.
        • Kanter M.
        • Aksu B.
        • et al.
        Preventive effects of curcumin on different aspiration material-induced lung injury in rats.
        Pediatr Surg Int. 2009; 25: 83
        • Kanter M.
        Effects of Nigella sativa seed extraction ameliorating lung tissue damage in rats after experimental pulmonary aspirations.
        Acta Histochem. 2009; 111: 393
        • Sahin S.H.
        • Kanter M.
        • Ayvaz S.
        • et al.
        The effect of hyperbaric oxygen treatment on aspiration pneumonia.
        J Mol Histol. 2011; 42 (Epub 2011 Jun 8): 301https://doi.org/10.1007/s10735-011-9334-6
        • Bogdan C.
        Nitric oxide and immune response.
        Nat Immunol. 2001; 2: 907
        • Lee K.H.
        • Rico P.
        • Billiar T.R.
        • Pinsky M.R.
        Nitric oxide production after acute, unilateral hydrochloric acid-induced lung injury in a canine model.
        Crit Care Med. 1998; 26: 2042
        • Kudoh L.
        • Miyazaki H.
        • Ohara M.
        • Fukushima J.
        • Tazawa T.
        • Yamada H.
        Activation of alveolar macrophages in acid-injured lung in rats: different effect of pentoxifylline on tumor necrosis factor-alpha and nitric oxide production.
        Crit Care Med. 2001; 29: 1621
        • Miyakawa H.
        • Sato K.
        • Shinbori T.
        • et al.
        Effects of inducible nitric oxide synthase and xanthine oxidase inhibitors on SEB-induced interstitial pneumonia in mice.
        Eur Respir J. 2002; 19: 447
        • Speyer C.L.
        • Neff T.A.
        • Warner R.L.
        • et al.
        Regulatory effects of iNOS on acute lung inflammatory responses in mice.
        Am J Pathol. 2003; 163: 2319
        • Harkin D.W.
        • Rubin B.B.
        • Romaschin A.
        • Lindsay T.F.
        Selective inducible nitric oxide synthase (iNOS) inhibition attenuates remote acute lung injury in a model of ruptured abdominal aortic aneurysm.
        J Surg Res. 2004; 120: 230
        • Bachofen M.
        • Weibel E.R.
        Structural alterations of lung parenchyma in the adult respiratory distress syndrome.
        Clin Chest Med. 1982; 3: 35
        • Botas C.
        • Poulain F.
        • Akiyama J.
        • et al.
        Altered surfactant homeostasis and alveolar type II cell morphology in mice lacking surfactant protein D.
        Proc Natl Acad Sci. 1998; 95: 1869
        • Crouch E.C.
        Collectins and pulmonary host defense.
        Am J Respir Cell Mol Biol. 1998; 19: 177
        • Ikegami M.
        • Scoville E.A.
        • Grant S.
        • et al.
        Surfactant protein-D and surfactant inhibit endotoxin-induced pulmonary inflammation.
        Chest. 2007; 13: 1447
        • Downey G.P.
        • Dong Q.
        • Kruger J.
        • Dedhar S.
        • Cherapanov V.
        Regulation of neutrophil activation in acute lung injury.
        Chest. 1999; 116: 46
        • Davidson B.A.
        • Knight P.R.
        • Helinski J.D.
        • Nader N.D.
        • Shanley T.P.
        • Johnson K.J.
        The role of tumor necrosis factor-alpha in the pathogenesis of aspiration pneumonitis in rats.
        Anesthesiology. 1999; 91: 486
        • Folkesson H.G.
        • Matthay M.A.
        • Hebert C.A.
        • Broaddus V.C.
        Acid aspiration-induced lung injury in rabbits is mediated by interleukin-8-dependent mechanisms.
        J Clin Invest. 1995; 96: 107