Advertisement

Combination Immunotherapy With LIGHT and Interleukin-2 Increases CD8 Central Memory T-Cells In Vivo

Published:February 22, 2021DOI:https://doi.org/10.1016/j.jss.2021.01.010

      Abstract

      Background

      The generation of long-term durable tumor immunity and prolonged disease-free survival depends on the ability to generate and support CD8+ central memory T-cells. Microsatellite-stable colon cancer is resistant to currently available immunotherapies; thus, development of novel mechanisms to increase both lymphocyte infiltration and central memory formation are needed to improve outcomes in these patients. We have previously demonstrated that both interleukin-2 (IL-2) and LIGHT (TNFSF14) independently enhance antitumor immune responses and hypothesize that combination immunotherapy may increase the CD8+ central memory T-cell response.

      Methods

      Murine colorectal cancer tumors were established in syngeneic mice. Tumors were treated with control, soluble, or liposomal IL-2 at established intervals. A subset of animal tumors overexpressed tumor necrosis superfamily factor LIGHT (TNFSF14). Peripheral blood, splenic, and tumor-infiltrating lymphocytes were isolated for phenotypic studies and flow cytometry.

      Results

      Tumors exposed to a combination of LIGHT and IL-2 experienced a decrease in tumor size compared with IL-2 alone that was not demonstrated in wild-type tumors or between other treatment groups. Combination exposure also increased splenic central memory CD8+ cells compared with IL-2 administration alone, while not increasing tumor-infiltrating lymphocytes. In the periphery, the combination enhanced levels of circulating CD8 T-cells and central memory T-cells, while also increasing circulating T-regulatory cells.

      Conclusions

      Combination of IL-2, whether soluble or liposomal, with exposure to LIGHT results in increased CD8+ central memory cells in the spleen and periphery. New combination immunotherapy strategies that support both effector and memory T-cell functions are critical to enhancing durable antitumor responses and warrant further investigation.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Surgical Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Siegel R.L.M.K.
        • Jemal A.
        Cancer statistics, 2015.
        CA Cancer J Clin. 2015; 65: 5-29
        • Qin J.
        • Kunda N.M.
        • Qiao G.
        • Tulla K.
        • Prabhakar B.S.
        • Maker A.V.
        Vaccination with mitoxantrone-treated primary colon cancer cells enhances tumor-infiltrating lymphocytes and clinical responses in colorectal liver metastases.
        J Surg Res. 2019; 233: 57-64
        • Qin J.
        • Kunda N.
        • Qiao G.
        • et al.
        Colon cancer cell treatment with rose bengal generates a protective immune response via immunogenic cell death.
        Cell Death Dis. 2017; 8: e2584
        • Maker A.V.
        • Ito H.
        • Mo Q.
        • et al.
        Genetic evidence that intratumoral T-cell proliferation and activation are associated with recurrence and survival in patients with resected colorectal liver metastases.
        Cancer Immunol Res. 2015; 3: 380-388
        • Maker A.V.
        • Phan G.Q.
        • Attia P.
        • et al.
        Tumor regression and autoimmunity in patients treated with cytotoxic T lymphocyte-associated antigen 4 blockade and interleukin 2: a phase I/II study.
        Ann Surg Oncol. 2005; 12: 1005-1016
        • Topalian S.L.
        • Hodi F.S.
        • Brahmer J.R.
        • et al.
        Safety, activity, and immune correlates of anti-PD-1 antibody in cancer.
        N Engl J Med. 2012; 366: 2443-2454
        • Maker A.V.
        • Yang J.C.
        • Sherry R.M.
        • et al.
        Intrapatient dose escalation of anti-CTLA-4 antibody in patients with metastatic melanoma.
        J Immunother. 2006; 29: 455-463
        • Le D.T.
        • Uram J.N.
        • Wang H.
        • et al.
        PD-1 blockade in tumors with mismatch-repair deficiency.
        N Engl J Med. 2015; 372: 2509-2520
        • Chung K.Y.
        • Gore I.
        • Fong L.
        • et al.
        Phase II study of the anti-cytotoxic T-lymphocyte-associated antigen 4 monoclonal antibody, tremelimumab, in patients with refractory metastatic colorectal cancer.
        J Clin Oncol. 2010; 28: 3485-3490
        • Mlecnik B.
        • Bindea G.
        • Angell H.K.
        • et al.
        Integrative analyses of colorectal cancer show immunoscore is a stronger predictor of patient survival than microsatellite instability.
        Immunity. 2016; 44: 698-711
        • Popat S.
        • Hubner R.
        • Houlston R.S.
        Systematic review of microsatellite instability and colorectal cancer prognosis.
        J Clin Oncol. 2005; 23: 609-618
        • Maker A.V.
        Precise identification of immunotherapeutic targets for solid malignancies using clues within the tumor microenvironment-Evidence to turn on the LIGHT.
        Oncoimmunology. 2016; 5: e1069937
        • Qiao G.
        • Qin J.
        • Kunda N.
        • et al.
        LIGHT elevation enhances immune eradication of colon cancer metastases.
        Cancer Res. 2017; 77: 1880-1891
        • Qin J.Z.
        • Upadhyay V.
        • Prabhakar B.
        • Maker A.V.
        Shedding LIGHT (TNFSF14) on the tumor microenvironment of colorectal cancer liver metastases.
        J Transl Med. 2013; 11: 70
        • Yu P.
        • Fu Y.X.
        Targeting tumors with LIGHT to generate metastasis-clearing immunity.
        Cytokine Growth Factor Rev. 2008; 19: 285-294
        • Yu P.
        • Lee Y.
        • Liu W.
        • et al.
        Priming of naive T cells inside tumors leads to eradication of established tumors.
        Nat Immunol. 2004; 5: 141-149
        • Klebanoff C.A.
        • Gattinoni L.
        • Torabi-Parizi P.
        • et al.
        Central memory self/tumor-reactive CD8+ T cells confer superior antitumor immunity compared with effector memory T cells.
        Proc Natl Acad Sci U S A. 2005; 102: 9571-9576
        • Boyman O.
        • Kovar M.
        • Rubinstein M.P.
        • Surh C.D.
        • Sprent J.
        Selective stimulation of T cell subsets with antibody-cytokine immune complexes.
        Science. 2006; 311: 1924-1927
        • Blattman J.N.
        • Grayson J.M.
        • Wherry E.J.
        • Kaech S.M.
        • Smith K.A.
        • Ahmed R.
        Therapeutic use of IL-2 to enhance antiviral T-cell responses in vivo.
        Nat Med. 2003; 9: 540-547
        • Boyman O.
        • Cho J.H.
        • Sprent J.
        The role of interleukin-2 in memory CD8 cell differentiation.
        Adv Exp Med Biol. 2010; 684: 28-41
        • Boni L.T.
        • Batenjany M.M.
        • Neville M.E.
        • et al.
        Interleukin-2-induced small unilamellar vesicle coalescence.
        Biochim Biophys Acta. 2001; 1514: 127-138
        • Neville M.E.
        • Boni L.T.
        • Pflug L.E.
        • Popescu M.C.
        • Robb R.J.
        Biopharmaceutics of liposomal interleukin 2, oncolipin.
        Cytokine. 2000; 12: 1691-1701
        • Neville M.E.
        • Robb R.J.
        • Popescu M.C.
        In situ vaccination against a non-immunogenic tumour using intratumoural injections of liposomal interleukin 2.
        Cytokine. 2001; 16: 239-250
        • Kwak L.W.
        • Pennington R.
        • Boni L.
        • Ochoa A.C.
        • Robb R.J.
        • Popescu M.C.
        Liposomal formulation of a self lymphoma antigen induces potent protective antitumor immunity.
        J Immunol. 1998; 160: 3637-3641
        • Castle J.C.
        • Loewer M.
        • Boegel S.
        • et al.
        Immunomic, genomic and transcriptomic characterization of CT26 colorectal carcinoma.
        BMC Genomics. 2014; 15: 190
        • Germano G.
        • Lamba S.
        • Rospo G.
        • et al.
        Inactivation of DNA repair triggers neoantigen generation and impairs tumour growth.
        Nature. 2017; 552: 116-120
        • Mosmann T.R.
        • Yokota T.
        • Kastelein R.
        • Zurawski S.M.
        • Arai N.
        • Takebe Y.
        Species-specificity of T cell stimulating activities of IL 2 and BSF-1 (IL 4): comparison of normal and recombinant, mouse and human IL 2 and BSF-1 (IL 4).
        J Immunol. 1987; 138: 1813-1816
        • Ejaz A.
        • Casadaban L.
        • Maker A.V.
        Utilization and impact of adjuvant chemotherapy among patients with resected stage II colon cancer: a multi-institutional analysis.
        J Surg Res. 2017; 215: 12-20
        • Casadaban L.
        • Rauscher G.
        • Aklilu M.
        • Villenes D.
        • Freels S.
        • Maker A.V.
        Adjuvant chemotherapy is associated with improved survival in patients with stage II colon cancer.
        Cancer. 2016; 122: 3277-3287
        • Saltz L.B.
        Value in colorectal cancer TreatmentL where it is lacking, and why.
        Cancer J. 2016; 22: 232-235
        • Tran T.B.
        • Maker V.K.
        • Maker A.V.
        Impact of immunotherapy after resection of pancreatic cancer.
        J Am Coll Surg. 2019; 229: 19-27 e1
        • Galon J.
        • Costes A.
        • Sanchez-Cabo F.
        • et al.
        Type, density, and location of immune cells within human colorectal tumors predict clinical outcome.
        Science. 2006; 313: 1960-1964
        • Naito Y.
        • Saito K.
        • Shiiba K.
        • et al.
        CD8+ T cells infiltrated within cancer cell nests as a prognostic factor in human colorectal cancer.
        Cancer Res. 1998; 58: 3491-3494
        • Sprent J.
        • Tough D.F.
        T cell death and memory.
        Science. 2001; 293: 245-248
        • Ahmed R.
        • Gray D.
        Immunological memory and protective immunity: understanding their relation.
        Science. 1996; 272: 54-60
        • Sprent J.
        • Surh C.D.
        T cell memory.
        Annu Rev Immunol. 2002; 20: 551-579
        • Haring J.S.
        • Badovinac V.P.
        • Harty J.T.
        Inflaming the CD8+ T cell response.
        Immunity. 2006; 25: 19-29
        • Klonowski K.D.
        • Williams K.J.
        • Marzo A.L.
        • Blair D.A.
        • Lingenheld E.G.
        • Lefrancois L.
        Dynamics of blood-borne CD8 memory T cell migration in vivo.
        Immunity. 2004; 20: 551-562
        • Sallusto F.
        • Lenig D.
        • Forster R.
        • Lipp M.
        • Lanzavecchia A.
        Two subsets of memory T lymphocytes with distinct homing potentials and effector functions.
        Nature. 1999; 401: 708-712
        • Usherwood E.J.
        • Hogan R.J.
        • Crowther G.
        • et al.
        Functionally heterogeneous CD8(+) T-cell memory is induced by Sendai virus infection of mice.
        J Virol. 1999; 73: 7278-7286
        • Gattinoni L.
        • Klebanoff C.A.
        • Palmer D.C.
        • et al.
        Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8+ T cells.
        J Clin Invest. 2005; 115: 1616-1626
        • Kumar P.
        • Marinelarena A.
        • Raghunathan D.
        • et al.
        Critical role of OX40 signaling in the TCR-independent phase of human and murine thymic Treg generation.
        Cell Mol Immunol. 2019; 16: 138-153
        • Alharshawi K.
        • Marinelarena A.
        • Kumar P.
        • et al.
        PKC- is dispensable for OX40L-induced TCR-independent Treg proliferation but contributes by enabling IL-2 production from effector T-cells.
        Sci Rep. 2017; 7: 6594
        • Maker A.V.
        • Attia P.
        • Rosenberg S.A.
        Analysis of the cellular mechanism of antitumor responses and autoimmunity in patients treated with CTLA-4 blockade.
        J Immunol. 2005; 175: 7746-7754
        • Maker A.
        • Qiao G.
        • Kunda N.
        • Prabhakar B.
        Combining targeted immunotherapy with checkpoint blockade inhibits formation of colorectal liver metastases (abstract).
        Ann Surg Oncol. 2017; 24: 1-202
        • Casadaban L.
        • Maker A.V.
        Can colon cancer recurrence and metastases Be determined after surgical resection using a gene expression signature?.
        J Clin Oncol. 2017; 35: 1372-1373
        • Jamieson N.B.
        • Maker A.V.
        Gene-expression profiling to predict responsiveness to immunotherapy.
        Cancer Gene Ther. 2017; 24: 134-140
        • Ahmed R.
        • Bevan M.J.
        • Reiner S.L.
        • Fearon D.T.
        The precursors of memory: models and controversies.
        Nat Rev Immunol. 2009; 9: 662-668
        • Kretschmer L.
        • Flossdorf M.
        • Mir J.
        • et al.
        Differential expansion of T central memory precursor and effector subsets is regulated by division speed.
        Nat Commun. 2020; 11: 113
        • Vial T.
        • Descotes J.
        Clinical toxicity of interleukin-2.
        Drug Saf. 1992; 7: 417-433
        • Kaartinen T.
        • Luostarinen A.
        • Maliniemi P.
        • et al.
        Low interleukin-2 concentration favors generation of early memory T cells over effector phenotypes during chimeric antigen receptor T-cell expansion.
        Cytotherapy. 2017; 19: 689-702
        • Mortara L.
        • Balza E.
        • Bruno A.
        • Poggi A.
        • Orecchia P.
        • Carnemolla B.
        Anti-cancer therapies employing IL-2 cytokine tumor targeting: contribution of innate, adaptive and immunosuppressive cells in the anti-tumor efficacy.
        Front Immunol. 2018; 9: 2905