Advertisement

Synergistic Effect of β-alanine and Aprotinin on Mesenteric Ischemia

  • Lisa Dominowski
    Affiliations
    Institut für Physiologische Chemie, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
    Search for articles by this author
  • Michael Kirsch
    Correspondence
    Corresponding author. Institut für Physiologische Chemie, Universitätsklinikum, Universität Duisburg-Essen, Hufelandstr. 55, D-45122, Essen, Germany. Tel.: +(49) 201 723 4108; fax: +(49) 201 723 5943.
    Affiliations
    Institut für Physiologische Chemie, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
    Search for articles by this author
Published:February 24, 2021DOI:https://doi.org/10.1016/j.jss.2021.01.026

      Abstract

      Background

      Acute mesenteric ischemia arises through sudden interruption of mesenteric blood flow, mostly due to an occlusion of the superior mesenteric artery and is associated with a high mortality of approximately 50% to 90%. In previous studies, the single application of β-alanine or aprotinin caused an ameliorated intestinal damage but without any systemic effects.

      Methods

      To analyze the combined effect of β-alanine and aprotinin on acute ischemia and reperfusion of the small intestine, a model with anesthetized rats was used. Ischemia and reperfusion were initiated by occluding and reopening the superior mesenteric artery. After 120 min of ischemia and 180 min of reperfusion, the intestine was analyzed for tissue damage, the activity of the saccharase, and accumulation of granulocytes. In addition, systemic and metabolic as well as inflammatory parameters were measured in blood at certain points in time.

      Results

      The combination of β-alanine and aprotinin resulted in a clearly stabilized mean arterial blood pressure and blood glucose level during the reperfusion period. Furthermore, the combined administration resulted in significantly reduced tissue damage parameters, cytokine and cell-free hemoglobin concentrations in blood plasma. In addition, the damage to the small intestine was significantly attenuated, so that the animals ultimately survived the entire test period because of the administration of both substances.

      Conclusions

      Overall, the simultaneous application of both substances leads to a synergistic protection without the occurrence of undesirable side effects. The combined usage of β-alanine and aprotinin can be seen as a promising approach to inhibit the onset of acute mesenteric ischemia.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Surgical Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Florim S.
        • Almeida A.
        • Rocha D.
        • Portugal P.
        Acute mesenteric ischaemia: a pictorial review.
        Insights Imaging. 2018; 9: 673-682
        • Bala M.
        • Kashuk J.
        • Moore E., E.
        • et al.
        Acute mesenteric ischemia: guidelines of the World Society of Emergency Surgery.
        World J Emerg Surg. 2017; 12: 38
        • Lock G.
        Acute intestinal ischaemia.
        Best Pract Res Clin Gastroenterol. 2001; 15: 83-98
        • Oldenburg W.A.
        • Lau L.L.
        • Rodenberg T.J.
        • Edmonds H.J.
        • Burger C.D.
        Acute mesenteric ischemia.
        Arch Intern Med. 2004; 164: 1054
        • Eckstein H.-H.
        Die akute mesenteriale Ischämie.
        Der Chirurg. 2003; 74: 419-431
        • De Groot H.
        • Rauen U.
        Ischemia-reperfusion injury: processes in pathogenetic networks: a review.
        Transplant Proc. 2007; 39: 481-484
        • Yasuhara H.
        Acute mesenteric ischemia: the challenge of gastroenterology.
        Surg Today. 2005; 35: 185-195
        • Acosta S.
        • Ogren M.
        • Sternby N.-H.
        • Bergqvist D.
        • Björck M.
        Incidence of acute thrombo-embolic occlusion of the superior mesenteric artery—a population-based study.
        Eur J Vasc Endovascular Surg. 2004; 27: 145-150
        • Brandt L.J.
        • Boley S.J.
        AGA technical review on intestinal ischemia.
        Gastroenterology. 2000; 118: 954-968
        • Safioleas
        • Moulakakis
        • Papavassiliou
        • Kontzoglou
        • Kostakis
        Acute mesenteric ischaemia, a highly lethal disease with a devastating outcome.
        Vasa. 2006; 35: 106-111
        • Nonthasoot B.
        • Tullavardhana T.
        • Sirichindakul B.
        • Suphapol J.
        Acute mesenteric ischemia: still high mortality rate in the era of 24-hour availability of angiography.
        J Med Assoc Thai. 2005; 88: S46
        • Brencher L.
        • Verhaegh R.
        • Kirsch M.
        Attenuation of intestinal ischemia-reperfusion-injury by β-alanine: a potentially glycine-receptor mediated effect.
        J Surg Res. 2017; 211: 233-241
        • Verhaegh R.
        • Petrat F.
        • Brencher L.
        • Kirsch M.
        Autodigestion by migrated trypsin is a major factor in small intestinal ischemia-reperfusion injury.
        J Surg Res. 2017; 219: 266-278
        • Shinohara T.
        • Harada M.
        • Ogi K.
        • et al.
        Identification of a G protein-coupled receptor specifically responsive to β-alanine.
        J Biol Chem. 2004; 279: 23559-23564
        • Lynch J.W.
        Molecular structure and function of the glycine receptor chloride channel.
        Physiol Rev. 2004; 84: 1051-1095
        • Rajendra S.
        • Lynch J.W.
        • Schofield P.R.
        The glycine receptor.
        Pharmacol Ther. 1997; 73: 121-146
        • Wu F.-S.
        • Gibbs T.T.
        • Farb D.H.
        Dual activation of GABAA and glycine receptors by β-alanine: inverse modulation by progesterone and 5α-pregnan-3α-ol-20-one.
        Eur J Pharmacol Mol Pharmacol. 1993; 246: 239-246
        • Mori M.
        • Gähwiler B.H.
        • Gerber U.
        β-Alanine and taurine as endogenous agonists at glycine receptors in rat hippocampus in vitro.
        J Physiol. 2002; 539: 191-200
        • Qi R.-b.
        • Zhang J.-y.
        • Lu D.-x.
        • Wang H.-d.
        • Wang H.-h.
        • Lie C.-J.
        Glycine receptors contribute to cytoprotection of glycine in myocardial cells.
        Chin Med J. 2007; 120: 915-921
        • Ikejima K.
        • Qu W.
        • Stachlewitz R.F.
        • Thurman R.G.
        Kupffer cells contain a glycine-gated chloride channel.
        Am J Physiol. 1997; 272: G1581-G1586
        • Van Den Eynden J.
        Glycine and glycine receptor signalling in non-neuronal cells.
        Front Mol Neurosci. 2009; 2: 9
        • Yamashina S.
        • Konno A.
        • Wheeler M.D.
        • Rusyn I.
        • Cox A.D.
        • Thurman R.G.
        Endothelial cells contain a glycine-gated chloride channel.
        Nutr Cancer. 2001; 40: 197-204
        • Wheeler M.
        • Stachlewitz R.F.
        • Yamashina S.
        • Ikejima K.
        • Morrow A.L.
        • Thurman R.G.
        Glycine-gated chloride channels in neutrophils attenuate calcium influx and superoxide production.
        FASEB J. 2000; 14: 476-484
        • Froh M.
        • Thurman R.G.
        • Wheeler M.D.
        Molecular evidence for a glycine-gated chloride channel in macrophages and leukocytes.
        Am J Physiol. 2002; 283: G856-G863
        • Brencher L.
        • Petrat F.
        • Stych K.
        • Hamburger T.
        • Kirsch M.
        Effect of glycine, pyruvate, and resveratrol on the regeneration process of postischemic intestinal mucosa.
        Biomed Res Int. 2017; 2017: 1072969
        • Lyseng-Williamson K.A.
        Aprotinin in adults at high risk of major blood loss during isolated CABG with cardiopulmonary bypass: a profile of its use in the EU.
        Drugs Ther Perspect. 2020; 36: 1-11
        • Petrat F.
        • Swoboda S.
        • de Groot H.
        • Schmitz K.J.
        Quantification of ischemia-reperfusion injury to the small intestine using a macroscopic score.
        J Invest Surg. 2010; 23: 208-217
        • Verhaegh R.
        • Petrat F.
        • De Groot H.
        Attenuation of intestinal ischemic injury and shock by physostigmine.
        J Surg Res. 2015; 194: 405-414
        • Chiu C.-J.
        • McArdle A.H.
        • Brown R.
        • Scott H.J.
        • Gurd F.N.
        Intestinal mucosal lesion in low-flow states: I. A morphological, hemodynamic, and metabolic reappraisal.
        Arch Surg. 1970; 101: 478-483
        • Park P.
        • Haglund U.
        • Bulkley G.B.
        • Fält K.
        The sequence of development of intestinal tissue injury after strangulation ischemia and reperfusion.
        Surgery. 1990; 107: 574-580
        • Taylor K.M.
        Antiinflammatory effects of aprotinin.
        Transfus Alter Transfus Med. 2004; 6: 39-46
        • Asimakopoulos G.
        • Lidington E.A.
        • Mason J.
        • Haskard D.O.
        • Taylor K.M.
        • Landis R.C.
        Effect of aprotinin on endothelial cell activation.
        J Thorac Cardiovasc Surg. 2001; 122: 123-128
        • Gobbetti T.
        • Cenac N.
        • Motta J.-P.
        • et al.
        Serine protease inhibition reduces post-ischemic granulocyte Recruitment in Mouse intestine.
        Am J Pathol. 2012; 180: 141-152
        • Chang M.
        • Kistler E.B.
        • Schmid-Schönbein G.W.
        Disruption of the mucosal barrier during gut ischemia allows entry of digestive enzymes into the intestinal wall.
        Shock. 2012; 37: 297
        • Arif R.
        • Verch M.
        • Farag M.
        • Karck M.
        Mesenterialischämie nach herzchirurgischen Eingriffen.
        Zeitschrift für Herz-,Thorax- und Gefäßchirurgie. 2018; 32: 111-121
        • Nemir Jr., P.
        • Hawthorne H.R.
        • lecrone B.L.
        Increase of serum lipase in experimentally induced appendical peritonitis.
        JAMA Surg. 1949; 59: 337-347
        • Tsai A.G.
        • Cabrales P.
        • Manjula B.N.
        • Acharya S.A.
        • Winslow R.M.
        Dissociation of local nitric oxide concentration and vasoconstriction in the presence of cell-free hemoglobin oxygen carriers.
        Blood. 2006; 108: 3603-3610
        • Acosta S.
        • Nilsson T.
        Current status on plasma biomarkers for acute mesenteric ischemia.
        J Thromb Thrombolysis. 2012; 33: 355-361