This paper is only available as a PDF. To read, Please Download here.
Abstract
Pulmonary oxygen injury is classified by the development of tissue and alveolar edema,
surfactant dysfunction, lung inflammation, and decreased pulmonary compliance. In
neonates prolonged oxygen therapy is associated with the development of bronchopulmonary
dysplasia. Recombinant DNA technology makes it possible to experimentally explore
the role of specific proteins in the development of pulmonary oxygen injury. However,in vivoexperiments require sensitive ways of identifying pulmonary oxygen injury early in
its development. We therefore compared the sensitivities of several experimental assays
used to assess pulmonary injury. We found that changes in pulmonary compliance were
the most sensitive and showed significant differences after 72 hr of exposure to normobaric
hyperoxia (FiO2= 0.95), which correlated with a small change in the histology of the mice lungs.
The concentration of protein in the bronchoalveolar lavage fluid was less sensitive
and did not differ significantly until after 96 hr of exposure. The survival in hyperoxia
also did not worsen until after 96 hr. The lung wet/dry weight ratios was the least
sensitive assay and did not increase until after 5 days of exposure to normobaric
hyperoxia. We conclude that a decrease in pulmonary compliance is an early indicator
of pulmonary oxygen injury and may be a better way to study the mechanisms and mediators
of pulmonary oxygen injury.
To read this article in full you will need to make a payment
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to Journal of Surgical ResearchAlready a print subscriber? Claim online access
Already an online subscriber? Sign in
Register: Create an account
Institutional Access: Sign in to ScienceDirect
References
REFERENCES
- Molecular basis of pulmonary oxygen toxicity.Clinics Pediatr. 1987; 14: 651-666
- Free radical-mediated diseases in pediatrics.Semin. Perinatol. 1992; 16: 47-57
- Oxygen toxicity.New Horizons. 1993; 1: 504-511
- Effects of pulmonary oxygen injury on airway content of surfactant-associated protein A.Pediatr. Res. 1988; 24: 568-573
- Pentoxifylline attenuates oxygen-induced lung injury.J. Surg. Res. 1994; 56: 543-548
- Protection from oxygen toxicity with endotoxin.J. Clin. Invest. 1980; 65: 1104-1110
- Role of nonenzymatically generated prostanoid, 8-iso-PGF2 alpha, in pulmonary oxygen toxicity.J. Appl. Physiol. 1994; 77: 2912-2917
- Human Mn-superoxide dismutase in pulmonary epithelial cells of transgenic mice confers protection from oxygen injury.J. Biol. Chem. 1992; 267: 23937-23941
- Knockout mice.N. Engl. J. Med. 1996; 334: 904-907
- Morphologic changes in pulmonary oxygen toxicity.Annu. Rev. Physiol. 1986; 48: 721-731
- Oxygen toxicity.Am. J. Med. 1980; 69: 117-126
- Combined effects of nitric oxide and hyperoxia on surfactant function and pulmonary inflammation.Am. J. Physiol. 1995; 269: L545-L550
- Increased expression of pulmonary surfactant proteins in oxygen-exposed rats.Am. J. Respir. Cell. Mol. Biol. 1991; 4: 102-107
- Hyperoxia-induced alterations of rat alveolar lavage composition properties.Exp. Lung Res. 1995; 21: 141-156
- Alterations in surfactant protein gene expression associated with premature birth and exposure to hyperoxia.Am. J. Physiol. 1991; 261: L386-L392
- Surfactants proteins and lipids are regulated independently during hyperoxia.Am. J. Physiol. 1992; 263: L291-L298
- Pulmonary physiological and surfactant changes during injury and recovery from hyperoxia.J. Appl. Physiol. 1985; 59: 1402-1409
- Selective inhibition of the inducible isoform of nitric oxide synthase prevents pulmonary trans-vascular flux during acute endotoxemia.J. Pediatr. Surg. 1996; 31: 1009-1015
- Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase.Cell. 1995; 81: 641-650
Article info
Identification
Copyright
© 1997 Academic Press. Published by Elsevier Inc. All rights reserved.