Advertisement
Regular Article| Volume 88, ISSUE 2, P88-96, February 2000

Download started.

Ok

Recovery after Cardioplegia in the Hypertrophic Rat Heart

      This paper is only available as a PDF. To read, Please Download here.

      Abstract

      Background.Enhanced recovery after cardioplegic arrest has been observed in rat hearts with hypertrophy induced by hemodynamic overload. We hypothesize that this is related to altered characteristics of hypertrophied myocardium—reflected by increased V3 isomyosin and glycolytic potential—other than increased left ventricular mass.
      Materials and methods. Isolated hearts from age-matched nonoperated and sham-operated control rats and from aortic-banded, hyperthyroid, and hypothyroid rats—groups in which hypertrophy and V3 as a percentage of left ventricular myosin vary independently—underwent 2 h of multidose cardioplegic arrest at 8°C followed by reperfusion at 37°C. Left ventricular V3 isomyosin was evaluated after separation by gel electrophoresis.
      Results. Moderate left ventricular hypertrophy was produced by aortic banding or hyperthyroidism and atrophy by hypothyroidism. V3 isomyosin was increased in banded (28%) and hypothyroid (75%) rats compared to control (12%) and hyperthyroid rats (7%). Myocardial glycogen content closely paralleled %V3. At 30 min of working reperfusion, functional recovery (assessed as percentage prearrest cardiac output) was 66 ± 4 and 68 ± 5% in control and hyperthyroid hearts and 81 ± 2 and 80 ± 5% in hearts from banded and hypothyroid rats (each P < 0.05 vs controls), respectively. At 30 min, hearts from banded and hypothyroid rats were also more efficient (as indexed by cardiac output at constant mean aortic pressure/myocardial oxygen consumption) than control and hyperthyroid hearts.
      Conclusions. The data suggest that recovery is related not to increased mass but to other changes in overload hypertrophy. Increased percentage V3 isomyosin and glycogen reflect these changes and may themselves contribute to improved functional recovery after cardioplegic arrest, as may increased postischemic efficiency.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Surgical Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      REFERENCES

        • Munfakh N.A.
        • Steinberg J.B.
        • Titus J.S.
        • Denenberg A.G.
        • O'Keefe D.D.
        • Daggett W.M.
        • Geffin G.A.
        Protection of the hypertrophied myocardium by crystalloid cardioplegia.
        J. Surg. Res. 1991; 51: 447
        • Blank S.D.
        • Lahorra J.A.
        • McDonald R.S.
        • Denenberg A.G.
        • Titus J.S.
        • Torchiana D.F.
        • Daggett W.M.
        • Geffin G.A.
        Superior recovery of hypertrophied rat myocardium after cardioplegic arrest.
        Ann. Thoracic Surg. 1998; 65: 390
        • Hearse D.J.
        • Stewart D.A.
        • Green D.G.
        Myocardial susceptibility to ischemic damage: A comparative study of disease models in the rat.
        Eur. J. Cardiol. 1978; 7: 437
        • Anderson P.G.
        • Allard M.F.
        • Thomas G.D.
        • Bishop S.P.
        • Digerness S.B.
        Increased ischemic injury but decreased hypoxic injury in hypertrophied rat hearts.
        Circ. Res. 1990; 67: 948
        • Momomura S.
        • Nagai Y.
        • Ogawa T.
        • Bessho M.
        • Yamashita H.
        • Serizawa T.
        Increased tolerance of ventricular function and energy metabolism to hypoxia in cardiomyopathic hamsters.
        J. Mol. Cell. Cardiol. 1993; 25: 551
        • Cooley D.A.
        • Reul G.J.
        • Wukasch D.C.
        Ischemic contracture of the heart: “Stone heart.
        Am. J. Cardiol. 1972; 29: 575
        • Levitsky S.
        Myocardial protection of the hypertrophied heart.
        Ann. Thoracic Surg. 1986; 41: 2
        • Orsinelli D.A.
        • Aurigemma G.P.
        • Battista S.
        • Krendel S.
        • Gaasch W.H.
        Left ventricular hypertrophy and mortality after aortic valve replacement for aortic stenosis.
        J. Am. Coll. Cardiol. 1993; 22: 1679
        • Attarian D.E.
        • Jones R.N.
        • Currie W.D.
        • Hill R.C.
        • Sink J.D.
        • Olsen C.O.
        • Chitwood Jr., W.R.
        • Wechsler A.S.
        Characteristics of chronic left ventricular hypertrophy induced by subcoronary valvular aortic stenosis. II. Response to ischemia.
        J. Thoracic Cardiovasc. Surg. 1981; 81: 389
        • Sink J.D.
        • Pellom G.L.
        • Currie W.D.
        • Hill R.C.
        • Olsen C.O.
        • Jones R.N.
        • Wechsler A.S.
        Response of hypertrophied myocardium to ischemia: Correlation with biochemical and physiological parameters.
        J. Thoracic Cardiovasc. Surg. 1981; 81: 865
        • Menasche P.
        • Grousset C.
        • Apstein C.S.
        • Marotte F.
        • Mouas C.
        • Piwnica A.
        Increased injury of hypertrophied myocardium with ischemic arrest: Preservation with hypothermia and cardioplegia.
        Am. Heart J. 1985; 110: 1204
        • Wexler L.F.
        • Lorell B.H.
        • Momomura S.
        • Weinberg E.O.
        • Ingwall J.S.
        • Apstein C.S.
        Enhanced sensitivity to hypoxia-induced diastolic dysfunction in pressure-overload left ventricular hypertrophy in the rat: Role of high energy phosphate depletion.
        Circ. Res. 1988; 62: 766
        • Buser P.T.
        • Wikman-Coffelt J.
        • Wu S.T.
        • Derugin N.
        • Parmley W.W.
        • Higgins C.B.
        Postischemic recovery of mechanical performance and energy metabolism in the presence of left ventricular hypertrophy. A 31P-MRS study.
        Circ. Res. 1990; 66: 735
        • Gaasch W.H.
        • Zile M.R.
        • Hoshino P.K.
        • Weinberg E.O.
        • Rhodes D.R.
        • Apstein C.S.
        Tolerance of the hypertrophic heart to ischemia. Studies in compensated and failing dog hearts with pressure overload hypertrophy.
        Circulation. 1990; 81: 1644
        • Smolenski R.T.
        • Jayakumar J.
        • Seymour A.M.
        • Yacoub M.H.
        Energy metabolism and mechanical recovery after cardioplegia in moderately hypertrophied rats.
        Mol. Cell. Biochem. 1998; 180: 137
        • Izumo S.
        • Nadal-Ginard B.
        • Mahdavi V.
        Protooncogene induction and reprogramming of cardiac gene expression produced by pressure overload.
        Proc. Natl. Acad. Sci. USA. 1988; 85: 339
        • Smith S.H.
        • Kramer M.F.
        • Reis I.
        • Bishop S.P.
        • Ingwall J.S.
        Regional changes in creatine kinase and myocyte size in hypertensive and nonhypertensive cardiac hypertrophy.
        Circ. Res. 1990; 67: 1334
        • Chen Z.
        • Higashiyama A.
        • Yaku H.
        • Bell S.
        • Fabian J.
        • Watkins M.W.
        • Schneider D.J.
        • Maughan D.W.
        • LeWinter M.M.
        Altered expression of troponin T isoforms in mild left ventricular hypertrophy in the rabbit.
        J. Mol. Cell. Cardiol. 1997; 29: 2345
        • Bishop S.P.
        • Altschuld R.A.
        Increased glycolytic metabolism in cardiac hypertrophy and congestive heart failure.
        Am. J. Physiol. 1970; 218: 153
        • Holubarsch C.
        • Goulette R.P.
        • Litten R.Z.
        • Martin B.J.
        • Mulieri L.A.
        • Alpert N.R.
        The economy of isometric force development, myosin isoenzyme pattern and myofibrillar ATPase activity in normal and hypothyroid rat myocardium.
        Circ. Res. 1985; 56: 78
        • Alpert N.R.
        • Mulieri L.A.
        • Hasenfuss G.
        • Holubarsch C.
        Myocyte reorganization in hypertrophied and failing hearts.
        Eur. Heart J. 1995; 16: 2
        • VanBuren P.
        • Harris D.E.
        • Alpert N.R.
        • Warshaw D.M.
        Cardiac V1 and V3 myosins differ in their hydrolytic and mechanical activities in vitro.
        Circ. Res. 1995; 77: 439
        • Hoh J.F.Y.
        • McGrath P.A.
        • Hale P.T.
        Electrophoretic analysis of multiple forms of rat cardiac myosin: Effects of hypophysectomy and thyroxine replacement.
        J. Mol. Cell. Cardiol. 1977; 10: 1053
        • Hoh J.F.Y.
        • Yeoh G.P.S.
        • Thomas M.A.W.
        • Higginbottom L.
        Structural differences in the heavy chains of rat ventricular myosin isoenzymes.
        FEBS Lett. 1979; 97: 330
        • Goto Y.
        • Slinker B.K.
        • LeWinter M.M.
        Decreased contractile efficiency and increased nonmechanical energy cost in hyperthyroid rabbit heart. Relation between O2 consumption and systolic pressure–volume area or force–time integral.
        Circ. Res. 1990; 66: 999
        • Mercadier J.J.
        • Lompre A.M.
        • Wisnewsky C.
        • Samuel J.L.
        • Bercovici J.
        • Swynghedauw B.
        • Schwartz K.
        Myosin isoenzymic changes in several models of rat cardiac hypertrophy.
        Circ. Res. 1981; 49: 525
        • Martin A.F.
        • Paul R.J.
        • McMahon E.G.
        Isomyosin transitions in ventricles of aldosterone–salt hypertensive rats.
        Hypertension. 1986; 8: 128
        • Ladenson P.W.
        • Kieffer J.D.
        • Farwell A.P.
        • Ridgway E.C.
        Modulation of myocardial l-triiodothyronine receptors in normal, hypothyroid, and hyperthyroid rats.
        Metabolism. 1986; 35: 5
        • Meerson F.Z.
        The myocardium in hyperfunction, hypertrophy and heart failure.
        Circ. Res. 1969; 25: 1
        • King L.M.
        • Opie L.H.
        Glucose and glycogen utilisation in myocardial ischemia—Changes in metabolism and consequences for the myocyte.
        Mol. Cell. Biochem. 1998; 180
        • Peyton R.B.
        • Jones R.N.
        • Attarian D.
        • Sink J.D.
        • Van Trigt P.
        • Currie W.D.
        • Wechsler A.S.
        Depressed high-energy phosphate content in hypertrophied ventricles of animal and man: The biologic basis for increased sensitivity to ischemic injury.
        Ann. Surg. 1982; 196: 278
        • Bolli R.
        Basic and clinical aspects of myocardial stunning.
        Prog. Cardiovasc. Dis. 1998; 40: 477
        • Singh N.
        • Dhalla A.K.
        • Seneviratne C.
        • Singal P.K.
        Oxidative stress and heart failure.
        Mol. Cell Biochem. 1995; 147: 77
        • Silverman N.A.
        Myocardial oxygen consumption after reversible ischemia.
        J. Card. Surg. 1994; 9: 465
        • Soei L.K.
        • Sassen L.M.A.
        • Fan D.S.
        • van Veen T.
        • Krams R.
        • Verdouw P.D.
        Myofibrillar Ca2+ sensitization predominantly enhances function and mechanical efficiency of stunned myocardium.
        Circulation. 1994; 90: 959
        • Cumming D.V.
        • Seymour A.M.
        • Rix L.K.
        • Kellett R.
        • Dhoot G.K.
        • Yacoub M.H.
        • Barton P.J.
        Troponin I and T protein expression in experimental cardiac hypertrophy.
        Cardioscience. 1995; 6: 65
        • Mercadier J.J.
        • Bouveret P.
        • Gorza L.
        • Schiaffino S.
        • Clark W.A.
        • Zak R.
        • Swynghedauw B.
        • Schwartz K.
        Myosin isoenzymes in normal and hypertrophied human ventricular myocardium.
        Circ. Res. 1983; 53: 52
        • Dawes G.S.
        • Mott J.C.
        • Shelley H.J.
        The importance of cardiac glycogen for the maintenance of life in foetal lambs and new-born animals during anoxia.
        J. Physiol. 1959; 146: 516
        • Stahlman M.T.
        Asphyxia of the fetus and newborn—An overview.
        in: Gluck L. Intrauterine Asphyxia and the Developing Fetal Brain. Year Book Med. Pub, Chicago1997: 3-7
        • Do E.
        • Baudet S.
        • Verdys M.
        • Touzeau C.
        • Bailly F.
        • Lucas-Heron B.
        • Sagniez M.
        • Rossi A.
        • Noireaud J.
        Energy metabolism in normal and hypertrophied right ventricle of the ferret heart.
        J. Mol. Cell. Cardiol. 1997; 29: 1903
        • Bray G.A.
        • Goodman H.M.
        Studies on cardiac glycogen in normal and thyroidectomized rats.
        Proc. Soc. Exp. Biol. Med. 1967; 125: 1310
        • Shelley W.B.
        • Code C.F.
        • Visscher M.B.
        The influence of thyroid, dinitrophenol and swimming on the glycogen and phosphocreatine level of the rat heart in relation to cardiac hypertrophy.
        Am. J. Physiol. 1942; 138: 652
        • Lagerstrom C.F.
        • Walker W.E.
        • Taegtmeyer H.
        Failure of glycogen depletion to improve left ventricular function of the rabbit heart after hypothermic ischemic arrest.
        Circ. Res. 1988; 63: 81
        • Steinberg J.B.
        • Doherty N.E.
        • Munfakh N.A.
        • Geffin G.A.
        • Titus J.S.
        • Hoaglin D.C.
        • Denenberg A.G.
        • Daggett W.M.
        Oxygenated cardioplegia: The metabolic and functional effects of glucose and insulin.
        Ann. Thoracic Surg. 1991; 51: 620
        • Schonekess B.O.
        • Allard M.F.
        • Henning S.L.
        • Wambolt R.B.
        • Lopaschuk G.D.
        Contribution of glycogen and exogenous glucose to glucose metabolism during ischemia in the hypertrophied rat heart.
        Circ. Res. 1997; 81: 540
        • Peters K.G.
        • Wangler R.D.
        • Tomanek R.J.
        • Marcus M.L.
        Effects of long-term cardiac hypertrophy on coronary vasodilator reserve in SHR rats.
        Am. J. Cardiol. 1984; 54: 1342
        • Chilian W.M.
        • Wangler R.D.
        • Peters K.G.
        • Tomanek R.J.
        • Marcus M.L.
        Thyroxine-induced left ventricular hypertrophy in the rat: Anatomical and physiological evidence for angiogenesis.
        Circ. Res. 1985; 57: 591